Multiscale finite elements through advection-induced coordinates for transient advection-diffusion equations

نویسندگان

  • Konrad Simon
  • Jörn Behrens
چکیده

Long simulation times in climate sciences typically require coarse grids due to computational constraints. Nonetheless, unresolved subscale information significantly influences the prognostic variables and can not be neglected for reliable long term simulations. This is typically done via parametrizations but their coupling to the coarse grid variables often involves simple heuristics. We explore a novel up-scaling approach inspired by multi-scale finite element methods. These methods are well established in porous media applications, where mostly stationary or quasi stationary situations prevail. In advection-dominated problems arising in climate simulations the approach needs to be adjusted. We do so by performing coordinate transforms that make the effect of transport milder in the vicinity of coarse element boundaries. The idea of our method is quite general and we demonstrate it as a proof-of-concept on a one-dimensional passive advection-diffusion equation with oscillatory background velocity and diffusion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

A multiscale Eulerian–Lagrangian localized adjoint method for transient advection–diffusion equations with oscillatory coefficients

We develop a multiscale Eulerian–Lagrangian localized adjoint method for transient linear advection– diffusion equations with oscillatory coefficients, which arise in mathematical models for describing flow and transport through heterogeneous porous media, composite material design, and other applications.

متن کامل

Bubble and multiscale stabilization of bilinear finite element methods for transient advection-diffusion equations on rectangular grids

It is known that the standard Galerkin finite element method (SGFEM) based on low order piecewise polynomials is unsuitable for the solution of steady and unsteady advection diffusion problems. In case the advection term dominates the diffusion one or small time steps are employed, numerical solutions obtained by SGFEM suffer from nonphysical oscillations, unless appropriately designed meshes a...

متن کامل

Variational multiscale stabilized FEM formulations for transport equations: stochastic advection-diffusion and incompressible stochastic Navier-Stokes equations

An extension of the deterministic variational multiscale (VMS) approach with algebraic subgrid scale (SGS) modeling is considered for developing stabilized finite element formulations for the stochastic advection and the incompressible stochastic Navier-Stokes equations. The stabilized formulations are numerically implemented using the spectral stochastic formulation of the finite element metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.07684  شماره 

صفحات  -

تاریخ انتشار 2018